Influence of long-term spaceflight on neuromechanical properties of muscles in humans.
نویسندگان
چکیده
Reflex and elastic properties of the triceps surae (TS) were measured on 12 male cosmonauts 28-40 days before a 3- to 6-mo spaceflight, 2 or 3 days after return (R+2/+3) and a few days later (R+5/+6). H reflexes to electrical stimulations and T reflexes to tendon taps gave the reflex excitability at rest. Under voluntary contractions, reflex excitability was assessed by the stretch reflex, elicited by sinusoidal length perturbations. Stiffness measurements concerned the musculoarticular system in passive conditions and the musculotendinous complex in active conditions. Results indicated 1) no changes (P > 0.05) in H reflexes, whatever the day of test, and 2) increase in T reflexes (P < 0.05) by 57%, despite a decrease (P < 0.05) in musculoarticular stiffness (11%) on R+2/+3. T reflexes decreased (P < 0.05) between R+2/+3 and R+5/+6 (-21%); 3) increase in stretch reflexes (P < 0.05) on R+2/+3 by 31%, whereas it decreased (P < 0.05) between R+2/+3 and R+5/+6 (-29%). Musculotendinous stiffness was increased (P < 0.05) whatever the day of test (25%). Links between changes in reflex and stiffness were also studied by considering individual data. At R+2/+3, correlated changes between T reflexes and musculoarticular stiffness suggested that, besides central adaptive phenomena, musculoarticular structures took part in the reflex adaptation. This mechanical contribution was confirmed when data collected at R+2/+3 and R+5/+6 were used because correlations between changes in stretch reflexes and musculotendinous stiffness were improved. In conclusion, the present study shows that peripheral influences take part in reflex changes in gravitational unloaded muscles, but can only be revealed when central influences are reduced.
منابع مشابه
Recovery of Neuromechanical Properties of the Human Plantarflexors after Long-term Spaceflight
Exposure to μG is known to induce a decrease in muscle strength in animals as well as in humans, principally in postural muscles (Edgerton & Roy, 1996). This is due to atrophy and induces mechanical adaptations affecting contractile (Thomason & Booth, 1990) and elastic properties (Canon & Goubel, 1995). Recently, changes in contractile and elastic properties of the human plantarflexors immediat...
متن کاملEffects of long-term spaceflight on mechanical properties of muscles in humans.
The effects of long-term spaceflight (90-180 days) on the contractile and elastic characteristics of the human plantarflexor muscles were studied in 14 cosmonauts before and 2-3 days after landing. Despite countermeasures practiced aboard, spaceflight was found to induce a decrease in maximal isometric torque (17%), whereas an index of maximal shortening velocity was found to increase (31%). In...
متن کاملThe effects of mid and long-term endurance exercise on heart angiogenesis and oxidative stress
Objective(s): Long-term, irregular endurance exercise may result in disturbance to the angiogenesis of heart muscles and blood supply. The aim of the present study is to evaluate the effects of mid- and long-term endurance exercise on the process of angiogenesis.Materials and Methods: Eighteen male Wister rats of 220±10 g, were randomly assigned to three groups of 6 rats including: Control, Mid...
متن کاملSkeletal muscle unweighting: spaceflight and ground-based models.
Long-term manned spaceflight requires that flight crews be exposed to extended periods of unweighting of antigravity skeletal muscles. This exposure will result in adaptations in these muscles that have the potential to debilitate crew members on return to increased gravity environments. Therefore, the development of countermeasures to prevent these unwanted adaptations is an important requirem...
متن کاملLong-term exposure to microgravity impairs vestibulo-cardiovascular reflex
The vestibular system is known to have an important role in controlling blood pressure upon posture transition (vestibulo-cardiovascular reflex, VCR). However, under a different gravitational environment, the sensitivity of the vestibular system may be altered. Thus, the VCR may become less sensitive after spaceflight because of orthostatic intolerance potentially induced by long-term exposure ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 94 2 شماره
صفحات -
تاریخ انتشار 2003